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Abstract

The exposome has been defined as the totality of exposure individuals experience over their lives 

and how those exposures affect health. Three domains of the exposome have been identified: 

internal, specific external and general external. Internal factors are those that are unique to the 

individual; and specific external factors include occupational exposures and lifestyle factors. The 

general external domain includes factors such as education level and financial status. Eliciting the 

exposome is daunting and at present not feasible and may never be fully realized. A variety of 

tools has been identified to measure the exposome. Biomarker measurements will be one of the 

major tools in exposomic studies. However, exposure data can also be obtained from other sources 

such as sensors, geographic information systems and conventional tools such as survey 

instruments. Proof of concept studies are being conducted that show the promise of the exposomic 

investigation and the integration of different kinds of data. The inherent value of exposomic data in 

epidemiologic studies is that they can provide greater understanding of the relationships among a 

broad range of chemical and other risk factors and diseases and ultimately lead to more effective 

and efficient prevention and control.
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WHAT IS THE EXPOSOME?

In 2005, Wild defined the exposome as the totality of exposure individuals experience from 

conception until death and its impact on chronic diseases (1) (a glossary of terms and 

definitions used in this article is provided in Appendix 1). Exposures can include toxicants 

in the general environment and in workplaces, diet, lifestyle choices and even 

socioeconomic status (Figure 1). People have unique characteristics that might make them 

more or less susceptible to stressors in their environment. A person’s genetics, epigenetics, 

health status, and physiology, as well as changes in these personal components caused by 

previous exposures, can influence the effects of new or present exposures. For example, 

metabolic pathways can be disrupted that change susceptibility to the insult or to a disease.

The premise envisioned with the exposome concept was that the exposome is 

complementary to the genome and that an integrated understanding of the genome and the 

exposome would contribute to synergistically addressing chronic human health issues. The 

science of epidemiology is the primary means of understanding the exposome and its 

interaction with health status. Research suggests that environmental exposures have a much 

greater impact on health and disease than genetic factors alone (2). The inherent value of 

exposomic approaches and data in epidemiologic studies is to provide a greater 

understanding of the relationships among exposures and diseases and ultimately lead to 

prevention of chronic diseases. Epidemiologic research both can utilize exposomic data in 

health and disease research and it can be a means of understanding the exposome (Figure 2). 

The exposome concept was further refined by Wild (3) to include three broad domains: 

internal, specific external, and general external. Internal factors are those that are specific to 

the individual such as physiology, age, body morphology, and their genome. Specific 

external factors include diet and occupational and environmental exposures as well as 

physical, biological and physiological exposures. The third domain of general external 

factors includes broader social constructs such as home location, education level and 

socioeconomic status. Wild noted that the domains can be viewed as both overlapping and 

intertwining, and that it is sometimes difficult to place a particular exposure in one domain 

or another. For example, he observed that one can debate whether physical activity should be 

in the internal domain or in the specific external domain. A comprehensive and informative 

assessment of exposure can be achieved by combining aspects of the three domains in ways 

that can be used to guide the design, conduct, and interpretation of epidemiologic studies.

An individual’s exposome is dynamic, which makes measuring the exposome challenging. 

Several critical life stages have been identified for which some exposures may have a greater 

impact with respect to future diseases. For example, the fetus or young child has rapidly 

growing cells and immature repair processes (4). Exposures at young ages may have 

significant influence over future health. Embryos or infants are rapidly maturing and may 

not have all the protective mechanisms in place to repair damage incurred from an exposure. 

For example, in the 1950s and 1960s some women were given diethylstilbesterol to prevent 

miscarriages (5). Their offspring, who were exposed in utero, have increased risk of 

reproductive tract cancers, decreased fertility, and difficult pregnancies (5, 6). The 

susceptibility of children and teenagers may differ from that of adults because they are still 

developing, have immature repair processes and have different hormone levels than adults. 
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As a result of these early-life exposures, the susceptibility to disease caused by later 

exposures may be increased. Additionally certain exposures can occur throughout different 

life-stages that are critically important as well (7). In utero exposures would mainly occur 

due to diet, pharmaceutical use or environmental/occupational exposures. Throughout their 

lifetime, individuals would have a steady-state exposure to some ambient agents such as 

allergens (7). Some xenobiotics may bioaccumulate resulting in a higher body burden with 

age. Occupational exposures would occur mainly during the working years; and as we age 

exposure to pharmaceuticals tends to increase.

Most epidemiologic studies get a snapshot look at exposures that affect health. Although the 

exposomic approach may allow for a broader view of exposure, the ability to measure past 

exposures to any great extent is limited; and measuring each agent to which a person may be 

exposed at any given time is not feasible at present or in the foreseeable future. Depending 

upon the study hypotheses, measurement of specific agents will be important along with a 

holistic exposure assessment approach that includes aspects of the three areas of the 

exposome described prior (3).

The challenges of measuring the complete exposome are daunting. Newer technologies such 

as omics, sensors, and geographic or spatial information are allowing for a more 

comprehensive understanding of the exposome. While the exposome is more likely to be 

useful in epidemiologic studies, it may also have other clinical or public health utility (8, 9). 

That utility could range from personalized medicine to improved risk assessment for 

regional exposures to chemicals, and will necessarily be dependent on the extent to which 

exposomic indicators are validated and to do that will require additional epidemiologic 

studies.

While the Wild definition of the exposome was developed to draw attention to the critical 

need for more complete environmental exposure assessment in epidemiological studies, 

others have broadened the definition of the exposome to include other factors such as 

behavior. Miller and Jones (10, p. 2) have defined the exposome as “the cumulative measure 

of environmental influences and associated biological responses throughout the lifespan, 

including exposures from the environment, diet, behavior, and endogenous processes”. Their 

definition expands on that of Wild to consider cumulative biological responses as well as 

endogenous processes. Ultimately, health status is influenced by the interaction of an 

individual’s environmental and genetic factors from conception to death (Figure 3). The 

explanation of both the exposome and the genome in a manner that can protect and promote 

health is important and there is need to pursue both.

WHAT HAS BEEN DONE IN THE FIELD?

Utilization of exposomic data in epidemiologic studies and surveillance efforts has occurred 

due to advancements in exposure science. Yet these advances also indicate the complexity of 

factors associated with total exposure assessment and the development of appropriate and 

effective risk management strategies. More importantly though, they help to determine what 

questions are most pertinent to performing comprehensive exposure assessments. Among the 
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questions to be considered, the growing scientific literature on this topic suggests the 

following (11):

• Which mixtures are most important from a public or occupational health 

perspective?

• What is the nature (i.e., duration, frequency, and timing) and magnitude 

(e.g., exposure concentration and dose) of relevant exposures for the 

population of interest?

• What is the mechanism (e.g., toxicokinetic or toxicodynamic) and 

consequence (e.g., additive, less than additive, more than additive) of the 

mixture’s interactive effects on exposed populations?

Exposure science is the discipline that studies the conditions for contact with toxicants, 

characterizing the quality and quantity of the toxicant from its sources to its transport and 

receipt by or interaction with the human body (12, 13). Regarding the evolution of exposure 

science (defined below) as the means for bridging the discipline of environmental science 

and environmental health science, Lioy (12) poses the following:

• What does one do with such exposure information (i.e., understanding 

variables that define contact with environmental stressors and the factors 

that influence the contact)?

• What role does exposure science play in situations beyond observational 

analyses and interpretation?

Addressing these questions through exposome-informed advances in exposure science and 

risk assessment methods will provide a foundation for improved tools for total exposure 

assessment and risk management.

In exploring implications for exposure science focusing on the exposome, Rappaport (2) 

advocates utilizing biomonitoring (e.g., blood sampling and other internal measures of dose) 

rather than focusing primarily on sampling exposures in food, water, and air. He also 

suggests the importance of better integration of these biomonitoring measures with 

environmental exposure measures to advance the field of exposure science and the 

understanding of the exposome as a means to characterize and control detrimental 

exposures. Pleil (14, p. 264) has suggested that biomarkers can be used to “assess the 

sustainability of the environmental conditions with respect to human health.”

There are four conventions in the literature for characterizing environmental biomarkers and 

how they fit into categories of grouping schemes. These four conventions are origin, 

function, kinetics and medium (14). From the categories of biomarkers, a sequence of data 

management strategies might be applied to recognize patterns and statistics within the 

exposome which provide insight into the exposure-dose-response relationship involving 

environmental stressors.

Exposomic data may contribute to determining why some people will develop a disease 

while others with the same or greater exposure will not. A key factor in describing the 

exposome is the ability to accurately measure exposures and their effects on human health. 
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However, the evolution and maturity of the science of exposomics can be viewed as a 

practical extension of the principles of total exposure assessment that ultimately seeks to 

inform risk management strategies.

The U.S. Environmental Protection Agency has been at the forefront of research in total 

exposure assessment. Led by the Environmental Protection Agency’s Office of Research and 

Development, the Cumulative Communities Research Program “focuses on exposure tools 

for advancing the science and understanding of cumulative risk to communities and 

individuals” (15, p. 353). There are multiple factors driving this approach for community 

(i.e., non-occupational) exposures, but most can be tied to the motivation that people want to 

know about the multiple stressors (e.g., pollutants) to which they are exposed, what the 

associated health risks are, and how these exposures and related risks can be prevented or 

reduced (16).

On a similar national-level surveillance effort, the French national occupational surveillance 

and prevention network (RNV3P) established a database for recording and tracking 

occupational health exposures and related adverse health effects (17, 18). A goal of the 

network and database is to provide better characterization of occupational disease-exposure 

relationships, thereby exploring a theoretical framework of the occupational exposome.

FUNDING INITIATIVES AND RESOURCES

National Institute of Environmental Health Sciences (NIEHS)

The National Institute of Environmental Health Sciences has long-supported the concept of 

the exposome, funding studies that are now being defined as exposomic in nature. The 

Institute recently established a strategic goal of transforming exposure science and has 

identified the exposome as a possible approach (19). They plan to advance characterizations 

of environmental exposure assessment at both the individual and population levels which 

will be accomplished through tools and technologies for multi-scale measurements.

Recently, the National Institute of Environmental Health Sciences funded the Health and 

Exposome Research Center: Understanding Lifetime Exposures (HERCULES) project at 

Emory University (http://emoryhercules.com/) with the stated goal of understanding lifetime 

exposures. The main aims of HERCULES are: 1) to provide greater access to exposome-

related approaches such as systems biology, metabolomics, high throughput toxicology, 

spatial and temporal statistical models; 2) to facilitate communication of the importance of 

environmental factors in disease using exposome principles; and 3) to expedite translation of 

novel scientific findings to develop novel sustainability, prevention or treatment strategies in 

humans.

Human Early-Life Exposome (HELIX; http://www.projecthelix.eu/)—The HELIX 

project (20) is a European collaboration that has been established as a proof of concept study 

to characterize children’s exposomes as they progress through early life. This project 

involves 13 partner institutions and will use data from six ongoing, prospective European 

birth cohorts of mothers and children living in Spain, France, the United Kingdom, Norway, 

Greece, and Lithuania. Traditional methods are being used for exposure assessment as well 
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as biomarker and omics measures to assess the exposomes. The project plans to measure 

external environmental exposures for food, water, air pollution, pesticides, noise, and 

ultraviolet radiation of up to 32,000 mother-child pairs and measure the growth, 

development, and health of the children, including birth outcomes, postnatal growth and 

body mass index, asthma and lung function, and neuro-development.

The intended outcome from this project is an exploration of the relationships between the 

early life exposome with omics markers and health in childhood. An important long-term 

goal is to estimate health impacts for the European population based on exposure levels and 

dose-response relationships developed from HELIX.

Health and Environment-wide Associations based on Large population 
Surveys (HEALS; http://www.heals-eu.eu/)—HEALS is a project funded by the 7th 

Framework Programme for the European Commission (21). The general objective of 

HEALS is to refine a methodology that integrates and applies analytical and computational 

tools for performing environment-wide association studies (EWAS) in support of European 

Union-wide environment and health assessments. HEALS interlinks activities that focus on 

aspects of individual exposure assessment to conventional and emerging environmental 

stressors and on the prediction of the associated health outcomes. The overall approach will 

be verified and refined in a series of population studies across Europe including twin 

cohorts, tackling different levels of environmental exposure, age windows of exposure, and 

socio-economic and genetic variability.

The external exposome will be estimated by integrating environmental, occupational and 

dietary data into exposure models. HEALS proposes to describe the internal exposome at the 

individual level by integrating omics derived data and biomonitoring data. The HEALS 

approach and tools will be tested by applying them in a number of population studies 

(including twins studies) across different exposure settings tackling key health endpoints for 

both children and the elderly. The overall population size involved in these studies to date is 

approximately 335,000 individuals covering different age, gender and socio-economic status 

groups. A high-level goal of HEALS is to develop scientific guidance on exposome-based 

risk assessment.

EXPOsOMICS (http://www.exposomicsproject.eu/)—EXPOsOMICS is a program 

developed by the European Union (22). It aims to develop a new approach to assess 

environmental exposures, primarily focusing on air pollution and water contaminants by 

developing a personal exposure monitoring (PEM) system (including sensors, smartphones, 

geo-referencing, satellites) to collect data on individuals’ external exposome as well as 

analyzing biological samples (internal markers of external exposures) by using omics 

technologies. The program will search for relationships between external exposures 

measured using the personal exposure monitoring system, which has not previously been 

used in large scale studies, and profiles of chemicals, measured by omics, in the same 

individuals. Using omics techniques the collected exposure data can be linked to 

biochemical and molecular changes, and the results will help to improve understanding on 

how xenobiotics influence the risk of developing chronic diseases.
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TOOLS USED IN THE STUDY OF THE EXPOSOME

Different sets of tools (Table 1) are needed to measure the three exposome domains as 

outlined by Wild (3). Specific exposures found in an individual’s environment may be 

evaluated in a variety of ways, including biomarker-based metrics such as urinary 

metabolites of xenobiotics, and sensors (either personal or remote monitoring) to detect 

contaminants in the individual environment and to evaluate prior occupational/

environmental exposures. Personal monitoring might use sensors to determine physical 

activity and other exposures. Survey instruments or biomarkers can measure stress. 

Databases, geographic information systems, and surveys will be helpful to elucidate general 

external exposures such as educational level or urban or rural environments in the third 

domain identified by Wild (3).

Biomarker measurements will have a large role in developing the exposome, especially 

given the associated advantages of requiring a small sample size, providing high throughput, 

and relatively low-cost for obtaining a wealth of usable information.

If the concept of the exposome is to be realized, epidemiologists will need to incorporate 

exposure and health information from traditional sources as well as consider information 

from non-traditional sources. The National Research Council (2012) released a report that 

identified 21st Century techniques that would be important to assess exposure (23). The 

exposome is a paradigm shift from a single-exposure-to-disease concept to a recognition that 

health is impacted by multiple exposures. Different sources of exposure and health 

information that may be useful to capture are discussed below to provide epidemiologists 

with greater insight of the tools that may be available to them.

Omic technologies

Omic biomarkers are a class of biomarkers of current scientific interest (Table 2). The 

discovery and use of these biomarkers have increased rapidly, due to the advent of high-

throughput technologies and innovations that include improved sample preparation, robotic 

sample-delivery systems, automated data processing, and use of multivariate statistical 

methods, with associated reductions in cost. Investigators have begun to use these 

biomarkers in larger-scale population studies of the exposome.

One of the greatest challenges with these studies is applying omics technologies to generate 

meaningful results. Epidemiologists must strive to understand the principles of omics and 

determine when it is appropriate to include biomarkers identified using these technologies. 

In addition, no single omics approach will suffice to characterize the exposome, and 

integration of omics outcomes and other sources of exposure information will be needed to 

deepen our understanding of the causes of disease. For example, metabolomics studies have 

shown links between gut flora, diet and cardiovascular disease (24, 25). Omics technologies 

have shown utility in determining toxicity and mode of action in risk assessments and 

assessing the health impact of an exposure using analysis of variance (ANOVA) approaches 

together with pair-wise comparisons between dose groups and the corresponding control 

(26). Thus, what might be considered an advance in exposomics can equally be considered a 

natural combining and extension of traditional tools.
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Molecular Epidemiology

Many of the techniques in assessing exposure and the exposome involve molecular 

epidemiologic studies. Molecular epidemiology is the use of biological markers (exposure, 

effect, susceptibility) in epidemiologic research (27, 28). In assessing the exposome, 

biomarkers of exposure may be the most useful. The development of adductomics, which 

measure the full complement of protein adducts might be useful in improving exposure 

assessment in epidemiologic studies because of the ability to reflect extended exposure (28, 

29). As some omics applications mature and systems biology becomes more incorporated in 

molecular epidemiology, the understanding of the exposome will be increased, and it should 

be possible to more broadly explore exposure-disease relationships, to study effect 

modifiers, and to obtain insight into temporal and multi-level factors in health and disease.

Sensor Technologies

Remote sensing is a key innovation in exposure science and is defined as the measurement 

of some property of a phenomenon, object, or material that is not in direct physical contact 

with the population being studied (23). The use of sensors for not only remote monitoring 

but personal monitoring is growing. Sensors are now used to measure clinical parameters 

such as blood pressure and glucose levels, and new sensors are being developed to measure 

biomarkers, such as portable adhesive sweat analyzers (30). The devices—with remote-

sensing-based spatial referencing technologies and modeling—enable the continuous, real-

time, real-world assessment of exposures that vary according to an individual’s location, 

activity, and lifestyle. The use of smart phones and tablet technology is only likely to grow 

and provide enhanced opportunities to collect exposure information (23, 31). Apple has 

created ResearchKit (https://developer.apple.com/researchkit/) a framework for Apple 

platforms that can be used in medical research of diseases such as Parkinson’s, asthma, 

diabetes, heart disease and breast cancer.

In another example used in a current exposomic study, the ExpoApp, a mobile application 

created specifically for the HELIX project, uses a Global Positioning System (GPS) and a 

built-in accelerometer to track a person’s location and measure physical activity every 10 

seconds (32). Participants in the HELIX project will wear ExpoApp-enabled smartphones 

for a week, along with air pollution and ultraviolet radiation monitors, and the data will be 

used to calculate the amount of air inhaled and an individual’s exposure to air pollutants. A 

challenge is that individuals with access to information from such applications may alter 

their behavior and thereby inject biases into the study data.

Geographic Information Systems (GIS)

Geographic Information Systems are informative for tracking the acquisition, editing, 

analysis, storage, and visualization of geographic data (33). Geographic Information 

Systems allow for mapping a variety of data, for example environmental, topographical or 

health-related to understand trends and patterns. Information from Geographic Information 

Systems would fall into and provide clarity to exposures in the general external domain of 

the three domains of the exposome described by Wild (3). Geographic Information Systems 

have been reported to enhance exposure assessment in epidemiologic studies, because such 

systems can provide information on broad environmental contaminant levels maps or to 
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define a population (34). For example, the Research Center on Health Disparities, Equity, 

and the Exposome (http://rchdee.uthsc.edu/) maintains the Public Health Exposome Data 

Information System, a longitudinal, 30-year data set that integrates over 20,000 

environmental and health data records (9). The database contains data indicators of the 

atmosphere, climate, water, land cover and land use that have been geocoded. In addition, a 

considerable amount of other data are geocoded and included in this database, derived from 

ground stations and field samples of emissions, heavy metals, toxic dump and storage sites, 

and Brownfields collected by the Environmental Protection Agency with other federal, state, 

and local agencies.

Conventional measurements

Survey instruments gather information for which there is no way to quantitatively measure 

exposures and have long been used in epidemiologic studies. These tools may be important 

in documenting retrospective exposures, which currently is not feasible with other 

exposomic tools. Modeling the data to improve exposure matrices will be an important 

aspect of using exposomic data.

Exposome informatics

With the advances in molecular medicine and development of omics technologies, the field 

of biomedical informatics has evolved as a discipline. Genome-wide association studies 

(GWAS) and studies combining genomic and phenotypic data have required the 

development of new biostatistical methods for quality control, imputation, and analysis 

issues such as multiple hypothesis testing. Developments in exposome science have revealed 

the need for evaluating the interrelationships among phenotype, genotype, and exposure 

data. As shown in the different approaches discussed here, these data will be heterogeneous, 

wide-ranging, and massive; will frequently involve time series; and will require high 

velocity processing (35). Some efforts have been made for the analysis of EWAS, but new 

research is required to develop approaches for data management, analysis and visualization.

Reality mining

The term “reality mining” refers to the analysis of behavioral and self-reported data 

extracted from social networks and other portable devices’ applications (36). By continually 

logging and time-stamping information about a subject’s activity, location, and proximity to 

other users, it is currently possible to identify patterns in the data and translate them into 

maps of social relationships. By definition of the exposome, all exposures are to be taken 

into account. Logistically, that is impossible but by using social media networks or citizen 

scientists’ efforts, such as HabitatMap (http://habitatmap.org/), additional exposure 

information could be obtained. This relational information could have much broader 

implications including the improvement of existing computational models of exposure, 

disease status of an individual, and disease spread (37). A recent report demonstrated how 

the mobile application, Yelp, was used to identify foodborne illnesses in New York City 

restaurants (38).
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Environment-wide association studies

In an EWAS employing techniques partially adapted from GWAS, Patel et al. (39, 40) used 

chemical, clinical and questionnaire data from the National Health and Nutrition 

Examination Survey (NHANES) cohorts to evaluate associations between multiple 

environmental factors and type 2 diabetes mellitus and serum lipid levels, respectively. The 

study followed two methodological steps analogous to those in a GWAS. First, the authors 

considered a panel of environmental assays, and identified those significantly associated or 

correlated with diabetes or serum lipids while controlling for multiple confounders. Second, 

they validated the associations by testing significant findings in other NHANES independent 

cohorts. The authors identified environmental factors, including select chemicals, 

corroborating earlier findings. Additionally, Patel et al. (41) screened for gene-environment 

interactions by integrating results from GWAS and EWAS. Properly designed, EWAS 

studies can lead to discovery of biomarkers for exposure and disease and establish a 

molecular basis for the cause of environmental diseases (42). Patel et al. (43) described the 

“exposome globe” [e.g. Figure 4], which is a visual depiction of the network of replicated 

correlations between individual exposures of the exposome. The exposome globe allows 

visualization of clusters of exposure.

Although omics technologies are at the forefront in studies of the exposome and associated 

biomarkers, omic-based measurements do not always reflect exposure and may instead be 

products of normal cellular function (3). Proteomics, transcriptomics and metabolomics are 

a few of the omics technologies that have shown great promise for exposomic studies. As 

our understanding of basic biologic pathways grows, perturbations in the pathways as 

measured by omics result in improved interpretation with respect to how health is affected. 

Other types of exposure information of value to EWAS include databases that contain 

exposure information or population demographics data that can impact exposures. Use of 

remote sensors to gather environmental data may help ascertain exposures to the population 

as a whole. Personal monitoring using sensors to determine exposures, physiological factors, 

and geographic location is beginning to be used in environmental health studies to assess the 

“total” exposure of study participants.

STUDY DESIGN IN EXPOSOMIC STUDIES

Ideally, the best approach in exposomics would be to use a longitudinal (prospective) cohort 

study design, as it allows follow up of individuals and repeated sampling as well as 

monitoring during windows of increased sensitivity. However, neither the biomarkers nor the 

environmental data could be recorded continuously and it would be necessary to carry out a 

series of cross-sectional investigations of the study population.

Candidate exposures vs. agnostic approaches

Two strategies have been identified for characterizing the exposome (2). One is a ‘bottom-

up’ strategy in which all the exposures in a person’s exposome are measured at set time 

points. Although this approach would have the advantage of identifying important exposures 

in the air, water, or diet, it is not currently feasible and would miss essential components of 

the internal chemical environment due to such factors as gender, obesity, inflammation, and 
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stress (44). At the other extreme is to measure a combination of omic endpoints and legacy 

biomarkers in repeated blood specimens. This strategy has been referred to as ‘top-down 

exposomics’ (2). This data-driven (or “agnostic”) approach lacks specific hypotheses (2). 

According to Rappaport (2), the exposome would consist of a profile of exogenous and 

endogenous exposures, but would not pinpoint their source. Since it is currently not feasible 

to measure all chemicals in the blood, it has been proposed (44, 45) to focus initially on the 

most prominent classes of toxicants known to cause disease, namely, reactive electrophiles, 

endocrine (hormone) disruptors, modulators of immune responses, agents that bind to 

cellular receptors, and metals. Exposures to these agents can be monitored in the blood 

either by direct measurement or by looking for their effects on physiological processes (such 

as receptor-based signaling). These measurements could help generate signatures or profiles 

for these exposures in the blood. These profiles could be used to help identify key exposures 

associated with a disease by comparing the profiles between cases of that disease and 

controls, preferably from longitudinal studies. Additionally, once important profiles of 

biomarkers have been identified the sources of exposure could be determined and methods 

to reduce the exposures could be identified. Therefore, discovery-driven research and 

hypothesis-driven research should be considered complementary and synergistic.

CHALLENGES IN STUDY DESIGN

While many epidemiologic studies measure multiple variables, the multiplicity of variables 

in exposomic studies can be daunting (46, 47) and may require approaches that are different 

from traditional epidemiology. From the epidemiology point of view, the following 

challenges have been identified in exposome studies:

Reverse causality

For an exposure to be a cause, the exposure must precede the outcome. Reverse causation is 

a situation in which the outcome precedes and causes the exposure instead of the other way 

around. This could occur, for example, if a person moved or changed his/her address as a 

result of a condition in the domicile that was making him or her sick. It is of particular 

concern in retrospective and cross-sectional studies. In prospective cohort studies, since 

exposure is determined in advance of disease onset, the probability of reverse causation is 

greatly diminished (1). EWAS study designs have been developed that can reduce the 

possibility of reverse causation (48).

Testing multiple variables for associations

Statistical inference problems with the use of omics methodologies involve the simultaneous 

test of thousands of null hypotheses. The multitude of comparisons made in these studies 

will result in both false positive (Type 1 errors) and, if the correction for multiple 

comparisons is overly conservative or power is inadequate, false negative (Type 2 errors) 

results (49).

Univariate models consider each predictive variable separately, and their association with the 

outcome of interest is tested using the same statistical model. The Family Wise Error Rate 

(FWER) and the False Discovery Rate (FDR) have been used to characterize the number of 
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associations that could falsely be declared statistically significant (50, 51). The Family Wise 

Error Rate is the probability of making one or more false discoveries, or type I errors, among 

all the hypotheses. Bonferroni and other correction methods are commonly used; however, 

these often produce exceedingly conservative thresholds (50).

In an exploratory approach (‘top-down exposomics’, described above), it may be preferable 

to use a less conservative correction strategy. The False Discovery Rate is the expected 

proportion of errors among all associations declared statistically significant. To control for 

the False Discovery Rate, one must define the proportion of positive findings that are 

allowed to be false, usually 5%. Methods have been developed for both approaches and are 

described in detail elsewhere (50).

Correlation among variables

While univariate methods are useful for uncovering simple relationships between predictors 

and responses, they are also likely to overlook relationships involving combinations of 

factors. Different multivariate methods have been developed for this purpose. Multivariate 

analyses aim to summarize the information contained in large datasets into a few synthetic 

variables [the principal components] that capture the latent structure of the data. Because 

these methods effectively reduce the number of dimensions necessary to represent the data, 

they are often referred to as dimension-reduction methods. These methods have been 

described in detail elsewhere (50). Due to the density of the data in exposomic studies, 

identification of independent associations will be challenging. Patel and Ioannidis (46, 47) 

have proposed some agnostic approaches to aid in the analysis of the large number of 

variables found in exposomic studies. Smith et al. (52) proposed the use of genetic traits and 

Mendelian randomization techniques to study highly confounded risk factors and disease 

causation. Such a technique may be useful for exposome studies to investigate the effects of 

modifiable risk factors of diseases that are too heavily confounded to be studied by 

conventional approaches.

Variability over time and between subjects

Variability over time and between subjects is associated with a multitude of intrinsic and 

extrinsic factors, some known and some unknown. Unlike the genome, omics endpoints are 

dynamic and likely to show variability in different cells and tissues, and throughout the life 

of an individual (53). Panel studies in small population samples have been proposed to 

measure the effect of short-term variability on exposure and omics biomarkers, on individual 

behaviors (physical activity, mobility, time activity), and on personal and indoor exposures 

(20).

Variability of exposure data

For exposures with a short biological half-life and little constancy in the underlying 

exposure behavior, temporal variability may be particularly high. For such exposures, intra-

individual compared with inter-individual variability is known to be high, and only repeat 

measurements over time provide improved exposure estimates (20). Studies to measure daily 

repeat biomarkers of non-persistent chemicals (phthalates, phenols, organophosphate 
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pesticides) in urine have been proposed to characterize intra- and inter-individual variability 

in these urine biomarkers, and where possible, correct for the uncertainties in a larger cohort.

Analytical measurement error

With the development of stable and cost-effective high-throughput platforms, large amounts 

of experimental data are generated. However, data obtained from these platforms are highly 

sensitive to experimental conditions, and can therefore include considerable noise in the 

form of measurement error. Statistical methods should be able to estimate technical nuisance 

variation (50).

Measurements

Many challenges in measuring the exposome exist. The sheer diversity and variability of 

exposures individuals experience throughout their lives is impossible to measure. Exposures 

constantly change in a person’s environment over time (54). Environmental contaminants 

appear and disappear and an individual may make changes in their lifestyle choices that can 

increase or decrease exposures. Additionally, the relevance of past exposures remains 

unknown and the inability to measure past exposures hampers the exposome (54). Certain 

life stages have been identified as being more susceptible to environmental exposures (i.e., 

lifecycle “windows of susceptibility”) so relevancy across time may also be an issue.

Biomarkers, one of the primary ways to measure the exposome, have numerous challenges. 

Their relevance to exposure or their predictive value in non-target tissues may not have been 

established. The full validation of the biomarker both in the laboratory and the population 

has not always been performed making the interpretation or relevance of the measurement 

difficult. Omics technologies have multiple advantages that make them well-suited for 

exposomic studies but also have limitations in interpretation and validation for exposures 

and effect of exposures. The management of large datasets is still a challenge for these 

technologies; and these technologies also require major investments in equipment and 

expertise.

Other techniques that may be important to measure the exposome also have limitations that 

include the uncertainty about relevance of the measurement, variability over time, and the 

inability to measure past exposures. While environmental monitoring (personal or remote), 

geospatial information, and reality mining may tell us what exposures a person may have 

had, the actual dose that an individual internalized and relevance of that exposure cannot 

always be determined. The inherent problem of connecting these external exposures to 

internal biomarker measurements has always been a challenge and is further exacerbated 

with exposomic research. Newer approaches such as those used by Patel et al. may be 

helpful in this regard (55). Better models that integrate exposure data from multiple sources 

will be more useful for determining health impact. Additionally, surveys or questionnaires 

can be improved to assess current or past exposures in greater depth and accuracy to 

facilitate research findings.
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MULTI-LEVEL ANALYSIS

Since the exposome can involve various types of data, such as biological, economic, 

behavioral, and social data, there will be challenges to model data from these areas and from 

individual, group and ecologic levels in regards to their role as determinants of disease. 

Difficulties in inference from ecologic data can impede epidemiologic research concerning 

the effects of the exposure on individual-level health behaviors and disease risks. Multi-level 

analysis seeks to explain relations involving both individual-level and aggregate level 

variables (56). Population and group-level factors may modify the relationship between 

individual-level risk factors and risk of disease (57). There are various approaches available 

to epidemiologists to perform multi-level modeling that utilize random effects models and 

generalized estimating equations. Multi-level models can be implemented using SAS Proc 

MIXED and SAS Proc GLIMMIX (58, 59).

FUTURE PROSPECTS

Wild (1) originally developed the concept of the exposome to draw attention to the need for 

comprehensive exposure assessment in epidemiologic studies. Lichtenstein et al. (60) 

estimated that the attributable risk from the genome for chronic disease was only somewhere 

between 10–30%, and the environment was responsible for the other 70–90%. Measuring 

the exposome has a critical role in understanding chronic disease formation and progression. 

The exposome provides improved exposure assessments by the integration of different types 

of exposure information, but can the utility of this concept be expanded beyond exposure 

assessment?

Improved exposure assessments can feed into the systems-biology approach to evaluate how 

exposures disrupt normal biological processes. This type of approach could provide 

information used in delineating the mode of action of the response or toxicity, and more 

accurately inform risk assessments and risk management. Early biological effects using a 

systems-biology approach and computational toxicology efforts offer great promise for 

improving risk assessments (26). The biomarker techniques such as the omics approaches 

have shown promise and can provide information on mode of action and dose-response 

relationships (61). As these techniques evolve, estimation of internal dose and response 

markers will be a critical test of these new technologies for application in risk assessment 

strategies (26). However, it has been reported that many research “findings” are false or 

overinflated. Improving the accuracy of research findings will require better powered 

studies, diminishing bias, and improvement in our understanding of R values (62, 63). Juarez 

(9) has explored the public health exposome as a way to integrate environmental contextual 

data with measures of health outcomes. The exposome is a new way to conduct health 

disparities research to understand the social and environmental factors and their effect on 

health. Others have suggested that the exposome could have a major role in clinical care or 

as a basis for transformative research (8) (64). The benefits of the exposome are many for 

both individual and population health research. The exposome can aid in identifying modes 

of action of stressors, identifying unknown exposures and improving our understanding of 

disease. This can lead to better risk assessments, better translation of science into practice 

and ultimately to disease prevention.
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The concept of the exposome is a paradigm shift. While the concept is daunting, in 

particular measuring all exposures an individual has in a lifetime and predicting health 

impact, studies are being conducted using exposomic principles. Epidemiologic studies can 

be improved by incorporation of exposomic principles, thus improving measured 

associations with many health outcomes and conditions.

Acknowledgments

The authors would like to acknowledge Ms. Brenda Jones for the artwork.

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the 
National Institute for Occupational Safety and Health (NIOSH). Mention of any company or product does not 
constitute endorsement by NIOSH. In addition, citations to Web sites external to NIOSH do not constitute NIOSH 
endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible 
for the content of these Web sites. All Web addresses referenced in this document were accessible as of the 
publication date.

Appendix 1

Environment- or Exposome-
wide assessment studies 
(EWAS)

Studies that collect multiple kinds of exposure data from multiple sources which are 
then related to health effects

Exposome Concept describing the totality of exposure experienced by an individual during their 
life and the health impact of those exposures (1)

Exposome informatics Data management framework to deal with large multi-scale data sources in exposome 
studies (32)

Genome The genetic material of an organism, encoded in DNA and including both the genes 
and the non-coding sequences of the DNA (68)

Genome-wide association 
studies (GWAS)

Studies that evaluate markers across the genome to elucidate associations with 
diseases

Geographic Information 
Systems (GIS)

Systems that manage geographic data (33)

Metabolome Sum of all low molecular weight metabolites present in a biological sample (69)

Omics technologies The collective characterization of components and measurement of molecules from a 
biological field of study, which involves a large scale data acquisition system that can 
be used to measure biological states or responses. Examples include the genome 
(DNA), transcriptome (RNA), and proteome (proteins)

Phenome All of the phenotypes of a cell, tissue, or organism

Proteome The full set of proteins encoded by a genome (68)

Reality mining Analysis of behavioral and self-reported data extracted from social networks and 
other portable devices’ applications (36)

Sensors Devices that measures an event or change. There are many diverse types of sensors 
available

Total exposure All exposures experienced by an individual

Transcriptome Complete set of RNA transcripts produced by the genome at any one time (67)

Glossary

EWAS Environment-wide association studies

GWAS Genome-wide association studies
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HEALS Health and Environment-wide Associations based on Large population 

Surveys

HELIX Human Early-Life Exposome

NHANES National Health and Nutrition Examination Survey
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Figure 1. 
Concept of the exposome. An individual has many sources of exposure. How those 

exposures are modulated and impact health depends on the individual’s unique 

characteristics.
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Figure 2. 
Exposome-informed epidemiologic research
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Figure 3. 
An example of an exposome and genome interaction
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Figure 4. Example of an overall exposome correlation globe (43)
575 exposures are grouped by a priori defined environmental health categories and displayed 

in in the globe. Line thickness is proportional to size of the absolute value of correlation 

coefficient. Adapted and used with permission from Pacific Symposium on Biocomputing. 

PCBs (polychlorinated biphenyls), PFCs (polyfluorinated compounds) and VOCs (volatile 

organic compounds.
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Table 1

Potential Tools to Measure the Exposome

Tool Domain

Biomonitoring and biomarker data from omics or other techniques Internal

Sensors for environmental or personal monitoring Specific external

Geographic Information Systems General external

Conventional methods such as survey instruments or job-exposure matrices Specific external

Reality mining from social networks or other sources General external
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Table 2

Examples of omics technologies that may be useful for the exposome

Epigenetics The study of the totality of all heritable 
changes in gene expression and 
chromatin organization that are 
independent of the DNA sequence itself 
and that can be inherited in a stable 
manner over cell divisions (65).

The epigenome is comprised of a number of post-translational modifications 
such as DNA methylation, histone modification and specifically positioned 
nucleosomes. The epigenome can be dynamic, influenced by environmental 
factors and extracellular stimuli, and change in response to these factors and is 
instrumental in developing the phenome (54, 66). It has been suggested that the 
epigenome may function as an interface between environmental factors and the 
genome, and that its deregulation by environmental stressors is likely to disrupt 
different cellular processes and contribute to disease risk (65).

Transcriptomics The study of the sequence of an RNA 
mirrors the sequence of the DNA from 
which it was transcribed. By analyzing 
the transcriptome, researchers can 
determine when and where each gene is 
actively expressed at any given moment. 
Gene expression microarrays measure 
packaged mRNA (mRNA with the 
introns spliced out) as a summary of 
gene activity (67).

The transcriptome is the complete set of RNA transcripts produced by the 
genome at any one time. Studies of transcriptome profiles may provide insights 
into how they are affected by development, disease, or environmental factors 
(54). Some studies have shown that the transcriptome is highly responsive to 
environmental exposures. For example, specific environmental exposures were 
shown to alter the expression of as much as 30% of the transcriptome in specific 
blood cells, which may also affect the phenome.

Proteomics The study of the full set of proteins 
encoded by a genome is known as 
proteomics and involves the 
identification, characterization and 
quantitation of expressed proteins in 
biological samples (68).

Protein profiles may be useful to understand the underlying cause of disease and 
may or may not be useful in identifying exposures. Protein profiles can be useful 
for describing the phenome and may be helpful in delineating health outcome.

Metabolomics The study of low molecular weight 
metabolites present in a biological 
sample (69).

The metabolome is the sum of all low molecular weight metabolites present in a 
biological sample. Metabolic profiles obtained using metabolomic techniques 
constitute the measurable part of the metabolic phenotypes (or metabotypes). 
These metabotypes show large interindividual differences and are characteristic 
of an individual at a particular time of his/her life; moreover, differences can be 
seen at the population level when comparing populations from different regions 
(54). Metabotypes are both genetically and environmentally determined, and it is 
possible to establish metabolic profiles from samples collected under different 
conditions (e.g., exposures, treatments, or physiologic states) and evaluate the 
effect of other environmental exposures on these profiles (54).

Adductomics The study of macromolecular adducts in 
the context of an entire genome (29).

DNA adducts are compounds that bind to DNA, causing damage and mutations. 
These mutations can result in cancer and birth defects in multicellular organisms. 
The science of adductomics seeks to identify all DNA adducts and the target 
sequence of each adduct. It is possible to measure adducts of electrophiles that 
result from reactions with DNA, with glutathione, and with blood proteins such 
as hemoglobin and human serum albumin (29).

Genomics The study of genes or their function 
(68).

While the exposome is complementary to the genome, some identification of 
genes that may impact exposure or effect of exposure may be useful. For 
example, genetic variants that code for metabolizing enzymes may increase or 
decrease the level of internal dose.
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